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ABSTRACT

This work focuses on analyzing well-established gradient-based unconstrained optimization algo-
rithms like Gradient Descent (GD), Mirror Descent (MD), Nesterov’s Accelerated Gradient Descent
(NAGD) and Newton’s Method (NM). To achieve this, we derive the continuous-time ordinary
differential equations (ODESs) of these algorithms, by comparing their iterative update rule to a
discretized version of the corresponding ODE. We then construct Lyapunov functions to investigate
the convergence and stability properties of the equilibrium points of the ODE (which correspond to
stationary points or local minima of the objective function). Additionally, we consider some special
cases for which the rate of convergence for all of them can be shown as O(1/t?), where p € R.
Lastly, we propose a new Lyapunov function for the ODE corresponding to Newton’s method and
provide a new simple proof for its convergence rate.

1 Introduction

Numerous methods have been developed to solve an unconstrained optimization problem of the form minx f(X),
where X € R" is the decision or parameter and X* = 0 is the minima. A few such popular algorithms are Gradient
Descent (GD), Mirror Descent (MD) [1], Nesterov’s Accelerated Gradient Descent (NAGD) [2], and Newton’s Method
(NM). These algorithms and their various properties, such as convergence rate and numerical stability, have been
well-studied in the literature.

However, the majority of studies have focused on their discretized forms. Alternatively, some authors have tried to
derive a continuous Ordinary Differential Equation (ODE) corresponding to these algorithms [3, 4, 5]. Once such an
ODE is formulated, employing Lyapunov-like arguments becomes feasible to assess the stability or convergence rate
concerning the ODE’s equilibrium points. These equilibrium points align with the stationary points of the objective
function, thus offering an avenue for analysis.

In this work, we re-establish numerous results from different studies concerning ODE analysis for earlier mentioned
gradient-based unconstrained optimization algorithms. We comment on the behavior of solutions of the ODEs around
the stationary points and derive their rate of convergence as O(1/t?), where p € R;. As a novelty, our work also
proposes a new Lyapunov function for the ODE corresponding to Newton’s method and a new proof for its convergence
rate.

2 Preliminaries

This section outlines several key concepts essential for understanding the results presented in this work. The proofs for
these statements are omitted, as they have been extensively covered in existing literature [6].

An Ordinary Differential Equation (ODE) is a system of differential equations denoted as &(t) = g(¢, z(t));t > 0,
where z(t) represents the solution to the ODE with an initial condition x(0), and g(¢, z(t)) is a well-behaved nonlinear
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function of the input arguments. This work assumes the existence and uniqueness of a solution to this system, indicating
that g(¢, x(t)) is Lipschitz continuous with a constant L. This assumption is justifiable as most optimization-related
problems are typically well-defined. For simplicity, we use the notations z(t) = x, x(0) = ¢, and &(t) = &.

The equilibrium points of an ODE correspond to solutions where & = 0. It suffices to examine the behavior of x around
these equilibrium points to assess whether the optimization algorithm converges to a stationary point. This analysis can
be facilitated by utilizing the following stability definitions.

An equilibrium point z = 0 of an ODE & = g(t, x) is characterized as follows:

. Stable, if Ve >0, 3d(e,t9) > 0s.t. ||z(to)|| < 0(g,t0) = ||z(t)]| <&, VE>to > 0.

. Unstable if it is not stable.

. Uniformly Stable (US), if Ve > 0,3 d(g) > 0s.t. ||z(to)|| < d(e) = ||z(t)|]| <e, VE>to > 0.

. Asymptotically Stable (AS), if it is stable and 3 ¢(tg) > 0 s.t. (t) = 0ast — 0, V [|z(to)|| < c(to).

. Uniformly Asymptotically Stable (UAS), ifitis US and 3¢ > O0s.t. z(t) — 0ast — 0, ¥V ||x(to)]| < c.
. Exponentially Stable (ES), if 3¢, k, A > 0 s.t. |[x(t)|| < k|jz(to)||e 1) ¥V ||z(to)|]| < ¢
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While obtaining bounds in these stability definitions is generally straightforward, finding the solution x itself poses a
non-trivial challenge. Alternatively, we can employ Lyapunov’s argument, constructing a function analogous to the
system’s energy to comment on stability.

Theorem 1 (Lyapunov Stability Theorem). Let = 0 be an equilibrium point for an ODE & = g(x) and D be a domain
with0 € D. Let V : D — R (Lyapunov or Energy Function) be a C' function s.t.,

1. V(z) >0,V e D\ {0}, & V(0) =0

2. V(z) = %—‘;g(t,x) <0,VzeD,
then x = 0 is stable. Further if V(z) <0, Yz € D\ {0}, s AS.

This simplifies our analysis, as we only need to establish a candidate Lyapunov function and fulfill the two conditions.
While this theorem proves highly effective for time-invariant systems, extending it to time-variant systems requires
careful modification of Theorem 1. We will first introduce a useful lemma in this context to address the uniform
convergence in time.

Lemma 1. For the Ordinary Differential Equation (ODE) & = g(t, z), an equilibrium solution x = 0 exhibits Uniform
Stability (US) if and only if there exists a class K function a(-) and a constant ¢ > 0 such that, for all t > to and all
[|z(to)|| < ¢ the inequality ||x(t)|| < a(||z(to)|]) holds.

Here, a continuous function « : [0,a) — [0, 00) is considered of class K if it is strictly increasing and o(0) = 0. If
a = oo, and a(r) — oo as r — oo, then it is classified as belonging to class K.

Using this lemma, we can now state the following theorem.

Theorem 2 (Lyapunov Stability Theorem for Time Variant Systems). Let x = 0 be an equilibrium point for an ODE
= g(t,x) and D C R"™ be a domain with 0 € D. Let V : [0,00) x D — R (Lyapunov-like or Energy Function) be a
C" function s.t.,

L ar(||lz]) < V(t,z) < as(]|z]]),

2. V(t,z) = %—‘; + %—‘;g(t,x) < —as(||x

),

YVt > 0, Vo € D, where oy, aa, and a are class K functions on [0,r). Then x = 0 is UAS.

It’s worth noting that both V (¢, x) and V(t, ) are bounded by a Lyapunov function, which justifies the term "Lyapunov-
like." When these bounding functions exhibit a particular structure involving powers of ||z||, a stronger form of
convergence can be shown. Formally, we can state it below.

Corollary 1. If Theorem 2 satisfies o;(||z||) = ki||x||%, where k;,a > 0,Yi € {1,2,3}, thenx = 0is ES.

The mentioned results provide a foundation for ODE analysis in Euclidean geometry. However, additional terminologies
become essential in more general scenarios, such as when dealing with the Mirror Descent algorithm or its variants.



Let E denote a finite-dimensional real vector space, and E* represent its dual space. For a given function f, the dual
function f* is defined as follows: f*(z) = sup,c (2, ) — f(z). It’s important to note that f* is always convex, as itis a
pointwise maximum of a linear function in z. As an example, if f(z) = 2%/2, then f*(z) = sup,cp 2x—22/2 = 2%/2.

Consider a continuously-differentiable, strictly convex function ¢ : €2 — R defined on a convex set 2. For any a,b € €2,
the Bregman divergence from z to y is defined as D, (a, b) := p(a) — ¢(b) — (V(b), a —b). This divergence measures
the difference between two points expressed in terms of the function .

To illustrate, if ¢(-) = %|| - [|3, the induced Bregman Divergence is the Squared Euclidean Norm, given by D, (a,b) =
zllall3 3 — (b,a—b) = %||a — b||3. This distance metric represents a statistical distance when interpreting a, b

as probability distributions.

3 ODE Analysis

3.1 Gradient Descent (GD)

To better understand the convergence of the vanilla Gradient Descent (GD) algorithm, let’s consider its iterative
form: Xyy1 = X — apVf(Xy), where f is the objective function to minimize. The minimizer of f is denoted
as X* = 0. Viewing the search method as an Euler discretization of the Ordinary Differential Equation (ODE)
& =—=Vf(x),xo = Xo, with o, as the constant discretization step size. The continuous-time function x represents the
trajectory of iterates. The equilibrium point V f(x) = 0 is equivalent to X* = 0, i.e., x = 0.

Let us construct a candidate Lyapunov function V' = 1||||?, then V = (=Vf(z),z). By convexity of f we have,

f(0) > f(x)+ (Vf(x),0—z) = (=Vf(z),z) < f(0) — f(x). Using this we get, V < f(0) — f(z) < 0. Hence,

V satisfies all the conditions of Theorem 1, implying that the z = 0 is AS.

While we now understand that the ODE converges to the equilibrium point, the next question is at what rate? Estimating
an upper bound on ||x|| or f(z) — f(0) for the chosen Lyapunov function proves challenging without assuming the
specific form of f or constructing another Lyapunov function for which upper bounds can be obtained easily. Instead,

we analyze how f (% fot (E(’T)d’]’) — f(0) behaves, akin to bounding the "average" of the solution.

To proceed further, we will integrate V(x) and use the Jenson’s Inequality, % fot flz(r))dr < f ( fo )

/Ot V(z)dr = / f(z
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+ [ satoar - 10 < %(vm - V@),
15 [ =0 >dr) (O < H(V(zo) - V@),
£(3 [ stryir) = 10 < 10 = 000,

Thus, we have shown that for a convex objective function in Euclidean geometry, the Gradient Descent ODE converges
at arate of O(1/1t).

3.2 Mirror Descent (MD)

In contrast to the GD analysis, which is more straightforward due to its compatibility with Euclidean geometry, the
Mirror Descent (MD) algorithm demands a distinct approach to construct Lyapunov arguments. This necessity arises
mainly because of dealing with dual variables and Bregman Divergence.

The following iteration gives the MD algorithm,
. 1
Xpy1 = arg;nln{@zMVf(Xk), X — X)) — ;DW(X7 X))}

where, o, is the step-size, ¢ is a u-strongly convex function and D, is the corresponding Bregman Divergence induced
by ¢. To derive the ODE for this iteration, we would need a constant step size and an explicit iteration rule like GD



rather than a recursive rule given by the solution of another optimization problem. Thus, we transform the above
iteration rule into the following,

Zit1 = Zy, — poeV f (X)),
X1 = V' (Ziya),
with initial Vo*(Zy) = Xo. Here, Z € E* is the dual variable of X € E (which is the primal variable). The "mirror"

map Vo transports X to the dual space E*, and V* is the dual function of V¢ which maps Z back to the primal
space E. Taking o, — 0, we obtain the continuous limit of above,

zZ= —,qu(-T),

& =Ve(2),

20 = Zp, o = X with Vy*(20) = xo.
For Lyapunov analysis, we’ll construct a function on the dual variable denoted as V' (z) = D,-(z,z*), where z*
represents the equilibrium value of z. For simplicity, we set *, 2* = 0. Accordingly, using the definition of Bregman
Divergence, V (z) = ¢*(2) — ¢*(0) — (V¢*(0), z), which is always Positive Definite. Taking the derivative, we obtain,

V(2) = (Vg*(2) = Ve*(0), 2) = (. 2),
= —(2,Vf(z)) < —(f(z) - f(0)) <O.

Applying the same reasoning as in the Gradient Descent ODE, we establish that V' qualifies as a valid Lyapunov
function according to Theorem 1. Consequently, z = 0 is AS, and f (% fot x(T)dT) — f(0) converges to 0 at a rate of
O(1/t). Lastly, it’s noteworthy that the Gradient Descent ODE can be viewed as a special case of the Mirror Descent

ODE by choosing ¢*(z) = 3||2||3. In this case, V* is the identity, causing x and z to coincide.

3.3 Nesterov’s Accelerated Gradient Descent (NAGD)

A family of methods utilizes accumulated gradients to improve convergence beyond the linear rates achieved by vanilla
Gradient Descent (GD) or Mirror Descent (MD) algorithms. One such method of interest in this work is Nesterov’s
Accelerated Gradient Descent (NAGD). This algorithm exhibits faster convergence and is expressed through the
following iterative steps,

Xe =Yo1 — VI (Yiz),
Yi = X + Bre( Xk — Xi—1).

Here, oy, denotes the stepsize, and [y, is the extrapolation parameter. In a specific scenario with a constant step size,
combining the equations for k — 1, k, and k + 1 yields,

Xit1 — X = Be—1(Xi, — Xj—1) — aV f(Yy).
To derive the continuous-time Ordinary Differential Equation (ODE) for x(t), we must establish a connection between

t and k. Setting t = ko initially seems intuitive, but the derivation fails. Instead, we redefine time as t = k+/«, leading
to,

2(t) = 2(kv/a) = Xx + O(Va),
2(t+ V@) = a((k + 1)v/a) = Xe1 + O(/a),
2(t = Va) = a((k — 1)v/a) = Xe_1 + O(/a).

Given that /o — 0, we can employ Taylor’s series to approximate as follows,

2+ v/a) ~ a(t) + Va1 (vaprid | ogva),

1! 2!
w(t V&)~ 2 - va ¢ (vt | o(va).

Combining these approximations, we derive the following,
Xpi1 — Xj, = Vai + %m +O(a),
Xi = Xyt = Vai — Si + O(Va),

Jai + %x +0(Va) = B (Vai — %:’c’) —aVf(Ya).



Assuming that in the long run Y3 = X}, and we can take y(¢) = Y; + O(y/«) and y(¢t) = z(t). Thus we have,

V(4 1)+ (1= )i+ VAV (@) + O(/a) = 0.

For 1, numerous choices are possible, as long as (1 — Bk)/ﬁi < 1/5,%_1. From the literature [7], we choose
Br—1 =1 — 3y/a/t. Consequently, our ODE becomes,

(-2 +(t)x+fw< )+ O(va) = 0.
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: ) i+ 26 Vi) + O(Va) =0

Taking the limit as o — 0 yields a second-order ODE, % + %x + Vf(z) = 0. Similar to previous sections, we assume
this ODE’s equilibrium occurs at z = 0.

Given that the resulting ODE has a time-varying component, we consider a candidate Lyapunov-like function as,
Vit ) = (1)~ FO) + 2z + S
= V(t,2) = 24(7(@) — F(0)) + (Y (), &)+ Az + L, 5+ ).
Substituting 34:/2 + ti/2 with —tV f(z)/2 gives us V (t,z) = 2t(f(x) — f(0)) + 2t(z, =V f(x)) < 0, where the
inequality follows from the strict convexity of f.

It can be shown that V is a valid Lyapunov-like function satisfying all the conditions of Theorem 2, but we omit the
proof here. Now, for the order of convergence, due to the monotonicity of V and the non-negativity of 2||z + 5%, we
have,

V(t,:l?) V(O IE())

fl@) = f0) € —5— < —3 = O(1/t?).

Thus, accumulating the gradients in the iterative update of NAGD results in faster convergence.

3.4 Newton’s Method (NM)

All the algorithms discussed so far have relied solely on information about the gradient of the objective function. To
improve the convergence rate, a class of algorithms called Newton’s and Quasi-Newton methods employs higher-order
information. In this context, we will specifically focus on the classical Newton’s Method (NM), which utilizes the true
Hessian of the objective. The iteration rule for this method is given by

Xiy1 = Xp — V2 F(X3) 'V F(Xk).

Assuming that f is strictly convex, making V2 f(-) Positive Definite, the corresponding ODE for this update rule can be
expressed as i = —V2f(z) "1V f(x). Before delving further, let’s derive an important property for this ODE, which
will be useful later,

d 9 B
o Vf@) =Vif@)i = -V f(z),

= Vf(z(t)) = e "V f(x0) + constant.

Now, consider a candidate Lyapunov function as V (z) = ||V f(z)|

)= |2+ £ (V f(z), ). It’s easy to observe that because
of the strict convexity of f, V(z) > &(|V f(z)||* + L(f ( ) — £(0))

+
> 0. Taking the derivative of V', we get,

V(z) = (V[(2), V2 f(2)d) + (x, V2 f(2)i) + (V (), 2),
= — VI (@) = (Vf(2),2) = (VI(2), V[ (2)V [ (2)),
< —|IVF@)IP = (f(2) = £(0)) = (Vf(2), V2 f (@) V f(x)) <O



Thus, V satisfies all the conditions of Theorem 1, making it a valid Lyapunov function, implying x = 0 is AS. Now, for
the order of convergence,

15 [ o) - 50 < 1 [ setoar - 10),

<1 [{-195@IP - (910, T2 1@) - Va(r) far
<7 [ I9s@ipar + 20

In the last step, since the Hessian and V' are always Positive Definite, we dropped the second term in the integral and
—V(x)/t. Utilizing the property we derived earlier, we obtain,

f<1 /Otxmch) 1) < Vo) _ IV Il /d

t t t
< Vian) Il _ oo
< Vian) | IVl

We know that ! > 1 + ¢, V ¢, thus —— > e~2*. This implies that,

1+2t
L/ Viwo) | VI (zo)ll* _
f<t/0 x(T)dT) —f(0) < =+ TN =001/,

Hence, with some mild assumptions on the Hessian of the objective, we have shown that the ODE of Newton’s Method
converges at the rate of O(1/t2).

4 Conclusion

In conclusion, this study has delved into gradient-based unconstrained optimization algorithms, focusing mainly
on formulating and analyzing the associated Ordinary Differential Equations (ODEs). While existing literature
predominantly examines these algorithms in their discretized form, our work provides a self-contained re-derivation of
the ODEs. This alternative viewpoint facilitates the application of Lyapunov-like arguments to evaluate the stability and
convergence rates of equilibrium points corresponding to the stationary points of the optimization algorithms. Using
the same Lyapunov arguments, we have also shown a new proof of convergence and its rate for the ODE of Newton’s
method.

Exploring ODE:s offers a richer understanding of the dynamics underlying unconstrained optimization processes. By
synthesizing and re-deriving critical findings from various works in this domain, our study contributes to the ongoing
research on the theoretical analysis of optimization algorithms.
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